Introduction to Information Theory

SARCAR Sayan Faculty of Library, Information, and Media Science

Contents

- What is Information?
- Motivating Examples
- Probability
- Information and Entropy
- Joint Entropy, Conditional Entropy, Chain Rule
- Mutual Information, Divergence

Information Theory- application areas

- Statistical physics (thermodynamics, quantum information theory);
- Computer science (machine learning, algorithmic complexity, resolvability);
- Probability theory (large deviations, limit theorems);
- Statistics (hypothesis testing, multi-user detection, Fisher information, estimation);
- Economics (gambling theory, investment theory);
- Biology (biological information theory);
- Cryptography (data security, watermarking);
- Networks (self-similarity, traffic regulation theory)

What is Information?

According to a dictionary definition, information can mean

- Facts provided or learned about something or someone: a vital piece of information.
- What is conveyed or represented by a particular arrangement or sequence of things: genetically transmitted information.

In this course: information in the context of *communication*:

- Explicitly include uncertainty, modelled probabilistically
- Shannon (1948): "Amount of unexpected data a message contains"
 - A theory of information transmission
 - Source, destination, transmitter, receiver

What is Information?

Fig. 1 – Schematic diagram of a general communication system.

What is Information?

Information is a message that is *uncertain* to receivers:

- If we receive something that we already knew with absolute certainty then it is non-informative.
- Uncertainty is crucial in measuring information content
- We will deal with uncertainty using probability theory

Information Theory

Information theory is the study of the fundamental *limits* and *potential* of the *representation* and transmission of information.

Example

What number am I thinking of?

- I have in mind a number that is between 1 and 20
- You are allowed to ask me one question at a time
- I can only answer yes/no
- Your goal is to figure out the number as quickly as possible
- What strategy would you follow?

What number am I thinking of?

- I have in mind a number that is between 1 and 20
- You are allowed to ask me one question at a time
- I can only answer yes/no
- Your goal is to figure out the number as quickly as possible
- What strategy would you follow?

Your strategy + my answers = a code for each number

Some variants:

- What if you knew I was twice as likely to pick numbers more than 10?
- What if you knew I never chose prime numbers?
- What if you knew I only ever chose one of 7 or 13?

What is the optimal strategy/coding?

Redundancy and Comparison

Cn y rd ths sntnc wtht ny vwls?

Redundancy and Comparison

Cn y rd ths sntnc wtht ny vwls? Can you read this sentence without any vowels?

Written English (and other languages) has much redundancy:

- Approximately 1 bit of information per letter
- Naively there should be almost 5 bits per letter

(For the moment think of "bit" as "number of yes/no questions")

How much redundancy can we *safely* remove? (Note: "rd" could be "read", "red", "road", etc.)

Error Correction

Hmauns hvae the aitliby to cerroct for eorrrs in txet and iegmas.

How much noise is it possible to correct for and how?

Outline

Basic Concepts

- Probability
- Information and Entropy
- Joint Entropy, Conditional Entropy and Chain Rule
- Mutual Information, Divergence

Probability

Let X, Y be random variables taking values in $\{x_i\}_{i=1}^N$ and $\{y_j\}_{j=1}^M$ (resp.) Sum Rule / Marginalization :

$$\overbrace{p(X = x_i)}^{marginal} = \sum_{j} \overbrace{p(X = x_i, Y = y_j)}^{joint}$$

Product Rule :

$$\overbrace{p(X = x_i, Y = y_j)}^{joint} = \overbrace{p(Y = y_j | X = x_i)}^{conditional} \overbrace{p(X = x_i)}^{marginal}$$
$$= p(X = x_i | Y = y_j)p(Y = y_j)$$

Bayes Rule :

An Illustration of a Distribution over Two Variable

p(X|Y=1)

conditional

Statistical Independence: Definition

Definition: Independent Variables

Two variables X and Y are statistically independent, denoted $X \perp Y$, if and only if their joint distribution *factorizes* into the product of their marginals:

 $X \perp Y \leftrightarrow p(X,Y) = p(X)p(Y)$

We may also consider random variables that are conditionally independent given some other variable.

Definition: Conditionally Independent Variables

Two variables X and Y are conditionally independent given Z, denoted $X \perp Y | Z$, if and only if

$$p(X, Y|Z) = p(X|Z)p(Y|Z)$$

Intuitively, Z is a common cause for X and Y.

Information

Say that a message comprises an answer to a single, yes/no question — e.g., Will rain tomorrow or not?

Informally, the amount of information in such a message is how *unexpected* or "surprising" it is.

• If you are 90% sure it will not rain tomorrow, learning that it is raining is more suprising than if you learnt it was not raining.

Information

For X a random variable with outcomes in \mathcal{X} and distribution p(X) the information in learning X = x is $h(x) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$.

The information in observing x is large when p(x) is small and vice versa. Rare events are more informative.

Entropy

The entropy of a random variable X is the average information content of its outcomes.

Entropy

Let X be a discrete r.v. with possible outcomes \mathcal{X} and distribution p(X). The entropy of X — or, equivalently, p(X) — is

$$H(X) = \mathbb{E}_X \left[h(X) \right] = -\sum_x p(x) \log_2 p(x)$$

where we define $0 \log 0 \equiv 0$, as $\lim_{p \to 0} p \log p = 0$.

Example 1: $\mathcal{X} = \{a, b, c, d\}; p(a) = p(b) = \frac{1}{8}, p(c) = \frac{1}{4}, p(d) = \frac{1}{2}.$ Entropy $H(X) = 2\frac{1}{8}\log_2 8 + \frac{1}{4}\log_2 4 + \frac{1}{2}\log_2 2 = 2\frac{3}{8} + \frac{2}{4} + \frac{1}{2} = 1.75.$

Example 2: $\mathcal{X} = \{a, b, c, d\}; p(a) = p(b) = p(c) = p(d) = \frac{1}{4}$. Entropy $H(X) = 4\frac{1}{4}\log_2 4 = 2$.

Example 3 — Bernoulli Distribution

Let $X \in \{0, 1\}$ with $X \sim \text{Bern}(X|\theta)$: $p(X = 0) = 1 - \theta$ and $p(X = 1) = \theta$. Entropy of X is $H(X) = H_2(\theta) := -\theta \log \theta - (1 - \theta) \log(1 - \theta)$.

- Minimum entropy \rightarrow no uncertainty about X, i.e. $\theta = 1$ or $\theta = 0$
- Maximum when \rightarrow complete uncertainty about X, i.e. $\theta = 0.5$
- For $\theta = 0.5$ (e.g. a fair coin) $H_2(X) = 1$ bit.

Property: Concavity

Proposition

Let $\mathbf{p} = (p_1, \ldots, p_N)$. The function $H(\mathbf{p}) := -\sum_{i=1}^N p_i \ln p_i$ is concave.

First derivative is $\nabla H(\mathbf{p}) = -(\ln p_1 + 1, \dots, \ln p_N + 1)^{\top}$ and so second derivative is $\nabla^2 H(\mathbf{p}) = \text{diag}(-p_1^{-1}, \dots, -p_N^{-1})$, which is negative semi-definite so $H(\mathbf{p})$ is concave.

We can switch between \log_2 and \ln since for x > 0 $\log_2 x = \log_2 e^{\ln x} = \ln x \cdot \log_2 e$.

When entropy is defined using \log_2 its *base* is 2 and units are *bits*. When entropy is defined using ln it has base *e* and units of *nats*.

Example 4 — Categorical Distribution

Categorical distributions with 30 different states:

Property: Maximised by Uniform Distribution

Proposition

Let X take values from $\mathcal{X} = \{1, ..., N\}$ with distribution $\mathbf{p} = (p_1, ..., p_N)$ where $p_i = p(X = i)$. Then $H(X) \le \log_2 N$ with equality iff $p_i = \frac{1}{N} \forall i$.

Sketch Proof: Objective: $\max_{\mathbf{p}} H(X) = -\sum_{i=1}^{N} p_i \log p_i$ s.t. $\sum_{i=1}^{N} p_i = 1$. Lagrangian:

$$\mathcal{C}(\mathbf{p}) = -\sum_{i} p_i \log p_i + \lambda \left(\sum_{i} p_i - 1\right).$$
 (1)

 $\nabla \mathcal{L}(\mathbf{p}) = 0$ gives $\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{i} p_{i} - 1 = 0$ and $\frac{\partial \mathcal{L}}{\partial p_{i}} = -(\log p_{i} + 1) + \lambda = 0$ so $\log p_{i} = \lambda - 1 \implies p_{i} = 2^{\lambda - 1}$. Summing p_{i} gives $1 = \sum_{i} 2^{\lambda - 1} = N \cdot 2^{\lambda - 1}$. Taking logs: $0 = \log_{2} N + \lambda - 1$ so $p_{i} = 2^{-\log_{2} N} = \frac{1}{N}$.

Note that $\log_2 N$ is number of bits needed to describe an outcome of X.

Property: Decomposability

For a r.v. X on $\mathcal{X} = \{x_1, \ldots, x_N\}$ with probability distribution $\mathbf{p} = (p_1, \ldots, p_N)$:

$$H(X) = H(X^{(1)}) + (1 - p_1)H(X^{(2:N)})$$

 $X^{(1)} \in \{0,1\}$ indicates if $X = x_1$ or not, so: $p(X^{(1)} = 1) = p(X = x_1) = p_1$ and $p(X^{(1)} = 0) = p(X \neq x_1) = 1 - p_1$

 $X^{(2:N)} \in \{x_2, \dots, x_N\} \text{ is r.v. over outcomes except } x_1 \text{ and} \\ p(X^{(2:N)} = x) = p(X = x | X \neq x_1) = \left(\frac{p_2}{1-p_1}, \dots, \frac{p_{|\mathcal{X}|}}{1-p_1}\right)$

Joint Entropy

The joint entropy H(X, Y) of a pair of discrete random variables with joint distribution p(X, Y) is given by:

$$egin{aligned} \mathcal{H}(X,Y) &= \mathbb{E}_{X,Y}\left[\lograc{1}{p(X,Y)}
ight] \ &= \sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}p(x,y)\lograc{1}{p(x,y)} \end{aligned}$$

Easy to remember: This is just the entropy H(Z) for a random variable Z = (X, Y) over $Z = X \times Y$ with distribution p(Z) = p(X, Y).

Joint Entropy (Independent random variables)

If X and Y are statistically independent we have that:

$$H(X, Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{1}{p(x, y)}$$

= $-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) p(y) [\log p(x) + \log p(y)]$
= $-\sum_{x \in \mathcal{X}} p(x) \log p(x) \sum_{y \in \mathcal{Y}} p(y) - \sum_{y \in \mathcal{Y}} p(y) \log p(y) \sum_{x \in \mathcal{X}} p(x)$
= $\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} + \sum_{y \in \mathcal{Y}} p(y) \log \frac{1}{p(y)}$
= $H(X) + H(Y)$

Entropy is additive for independent random variables. Also, H(X, Y) = H(X) + H(Y) implies p(X, Y) = p(X)p(Y).

An Axiomatic Characterisation

Why that definition of entropy? Why not another function?

Suppose we want a measure H(X) of "information" in r.v. X so that

- H depends on the distribution of X, and not the outcomes themselves
- The H for the combination of two variables X, Y is at most the sum of the corresponding H values
- The H for the combination of two independent variables X, Y is the sum of the corresponding H values
- Adding outcomes with probability zero does not affect H
- The *H* for an unbiased Bernoulli is 1
- The H for a Bernoulli with parameter p tends to 0 as $p \rightarrow 0$

Then, the only possible choice for H is

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

Conditional Entropy

The conditional entropy of Y given X = x is the entropy of the probability distribution p(Y|X = x):

$$H(Y|X=x) = \sum_{y \in \mathcal{Y}} p(y|X=x) \log \frac{1}{p(y|X=x)}$$

The conditional entropy of Y given X, is the average over X of the conditional entropy of Y given X = x:

$$egin{aligned} \mathcal{H}(Y|X) &= \sum_{x \in \mathcal{X}} p(x) \mathcal{H}(Y|X = x) \ &= \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log rac{1}{p(y|x)} \ &= \mathbb{E}_{X,Y} \left[rac{1}{p(Y|X)}
ight] \end{aligned}$$

Average uncertainty that remains about Y when X is known.

Chain Rule

The joint entropy can be written as:

$$H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$$

= $-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) [\log p(x) + \log p(y|x)]$
= $-\sum_{x \in \mathcal{X}} \log p(x) \sum_{y \in \mathcal{Y}} p(x, y) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$
= $H(X) + H(Y|X) = H(Y) + H(X|Y)$

The joint uncertainty of X and Y is the uncertainty of X plus the uncertainty of Y given X

Relative Entropy

The relative entropy or Kullback-Leibler (KL) divergence between two probability distributions p(X) and q(X) is defined as:

$$D_{\mathsf{KL}}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log rac{p(x)}{q(x)} = \mathbb{E}_{p(X)} \left[\log rac{p(X)}{q(X)}
ight].$$

- Note:
 - Both p(X) and q(X) are defined over the same alphabet \mathcal{X}
- Conventions:

$$0\log \frac{0}{0} \stackrel{\text{def}}{=} 0$$
 $0\log \frac{0}{q} \stackrel{\text{def}}{=} 0$ $p\log \frac{p}{0} \stackrel{\text{def}}{=} \infty$

Relative Entropy

Properties:

- $D_{\mathsf{KL}}(p\|q) \ge 0$
- $D_{\mathsf{KL}}(p\|q) = 0 \Leftrightarrow p = q$
- $D_{\mathsf{KL}}(p\|q) \neq D_{\mathsf{KL}}(q\|p)$

Observations:

- Not a true distance since is not symmetric and does not satisfy the triangle inequality
- Hence, "KL divergence" rather than "KL distance"
- Very important in machine learning and information theory. The "right" distance for distributions.

Mutual Information

Let X, Y be two r.v. with joint p(X, Y) and marginals p(X) and p(Y):

Definition

The mutual information I(X; Y) is the relative entropy between the joint distribution p(X, Y) and the product distribution p(X)p(Y):

$$(X; Y) = D_{\mathsf{KL}} \left(p(X, Y) \| p(X) p(Y) \right)$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}$$

Measures "how far away" the joint distribution is from independent.

Intuitively, how much information, on average, does X convey about Y.

Relationship between Entropy and Mutual Information

We can re-write the definition of mutual information as:

$$I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x|y)}{p(x)}$$
$$= -\sum_{x \in \mathcal{X}} \log p(x) \sum_{y \in \mathcal{Y}} p(x, y) - \left(-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y)\right)$$
$$= H(X) - H(X|Y)$$

The average reduction in uncertainty of X due to the knowledge of Y.

Mutual Information: Properties

• Mutual Information is non-negative:

 $I(X;Y) \geq 0$

• Since H(X, Y) = H(X) + H(Y|X) we have that:

I(X;Y) = H(X) + H(Y) - H(X,Y)

• Above is symmetric in X and Y so

I(X;Y) = I(Y;X)

• Finally:

$$I(X;X) = H(X) - H(X|X) = H(X)$$

Sometimes the entropy is referred to as self-information

Breakdown of Joint Entropy

Conditional Mutual Information

The conditional mutual information between X and Y given $Z = z_k$:

$$I(X; Y|Z = z_k) = H(X|Z = z_k) - H(X|Y, Z = z_k).$$

Averaging over Z we obtain:

The conditional mutual information between X and Y given Z:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$
$$= \mathbb{E}_{p(X,Y,Z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$$

Q&A Please write any feedback regarding class to <u>sayans@slis.tsukuba.ac.jp</u> Sub: Informatics class feedback

