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Information Theory- application areas

= Statistical physics (thermodynamics, quantum information
theory);

» Computer science (machine learning, algorithmic complexity,
resolvability);

» Probability theory (large deviations, limit theorems);

= Statistics (hypothesis testing, multi-user detection, Fisher
information, estimation);

= Economics (gambling theory, investment theory);
= Biology (biological information theory);
= Cryptography (data security, watermarking);

» Networks (self-similarity, traffic regulation theory)
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What is Information?

According to a dictionary definition, information can mean
@ Facts provided or learned about something or someone:
a vital piece of information.
@ What is conveyed or represented by a particular arrangement or

sequence of things:
genetically transmitted information.

In this course: information in the context of communication:

e Explicitly include uncertainty, modelled probabilistically
@ Shannon (1948): “Amount of unexpected data a message contains”

» A theory of information transmission
» Source, destination, transmitter, receiver
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What is Information?

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
> > > -
SIGNAL RECEIVED
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MESSAGE MESSAGE
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SOURCE

Fig. 1 — Schematic diagram of a general communication system.

From Shannon (1948)
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What is Information?

Information is a message that is uncertain to receivers:

@ If we receive something that we already knew with absolute certainty
then it is non-informative.

@ Uncertainty is crucial in measuring information content

@ We will deal with uncertainty using probability theory

Information Theory

Information theory is the study of the fundamental /imits and potential of
the representation and transmission of information.
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Example
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What number am | thinking of?

@ | have in mind a number that is between 1 and 20

@ You are allowed to ask me one question at a time

@ | can only answer yes/no

@ Your goal is to figure out the number as quickly as possible
@ What strategy would you follow?
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What number am | thinking of?

@ | have in mind a number that is between 1 and 20

@ You are allowed to ask me one question at a time

@ | can only answer yes/no

@ Your goal is to figure out the number as quickly as possible

@ What strategy would you follow?

Your strategy + my answers = a code for each number

Some variants:
@ What if you knew | was twice as likely to pick numbers more than 107
@ What if you knew | never chose prime numbers?

@ What if you knew | only ever chose one of 7 or 137

What is the optimal strategy/coding? }ﬁfﬁj\“%
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Redundancy and Comparison

Cn vy rd ths sntnc wtht ny vwlis?




Redundancy and Comparison

Cn y rd ths sntnc wtht ny vwls?
Can you read this sentence without any vowels?

Written English (and other languages) has much redundancy:
@ Approximately 1 bit of information per letter
@ Naively there should be almost 5 bits per letter

(For the moment think of “bit" as “number of yes/no questions”)

How much redundancy can we safely remove?
(Note: “rd” could be “read”, “red”, “road”, etc.)
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Error Correction

Hmauns hvae the aitliby to cerroct for eorrrs in txet and iegmas.




Outline

Basic Concepts

@ Probability

@ Information and Entropy

@ Joint Entropy, Conditional Entropy and Chain Rule
@ Mutual Information, Divergence
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Probability

Let X, Y be random variables taking values in {x;} , and {yj "1 (resp.)

Sum Rule / Marginalization :

marginal Joint
pPX=xi)=) p(X=x,Y =y
J
Product Rule :
Jjoint conditional marginal

",

p(X:x;,Y:JQ'):p(Y:j/J,'\X:X,) ( %Xr')
=p(X =5%|¥ =w)p(Y =)

Bayes Rule :
_ likelihood prior
posterior - - i e -
: ~ Y P(X=x]Y =y)p(Y =y)
plY =yl X =x)= 10
( | ) K = )
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An Illustration of a Distribution
over Two Variable

p(X,Y) p(X)
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p(Y) p(X[Y =1)
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Statistical Independence: Definition

Two variables X and Y are statistically independent, denoted X 1L Y, if
and only if their joint distribution factorizes into the product of their
marginals:

X LY & p(X,Y)=p(X)p(Y)

#

We may also consider random variables that are conditionally independent
given some other variable.

Definition: Conditionally Independent Variables

Two variables X and Y are conditionally independent given Z, denoted
X L Y|Z, if and only if

p(X, Y[Z) = p(X[Z)p(Y|Z)

Intuitively, Z is a common cause for X and Y. P
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Information

Say that a message comprises an answer to a single, yes/no question —
e.g., Will rain tomorrow or not?

Informally, the amount of information in such a message is how
unexpected or “surprising” it Is.

e If you are 90% sure it will not rain tomorrow, learning that it is
raining is more suprising than if you learnt it was not raining.

Information

For X a random variable with outcomes in X’ and distribution p(X) the
information in learning X = x is h(x) = log, ﬁ = — log, p(x).

The information in observing x is large when p(x) is small and vice versa.

Rare events are more informative.
J R T S
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Entropy

The entropy of a random variable X is the average information content of
its outcomes.

Let X be a discrete r.v. with possible outcomes A" and distribution p(X).
The entropy of X — or, equivalently, p(X) — is

H(X) = Ex [h(X)] = = ) _ p(x) log, p(x)

X

where we define Olog0 = 0, as limp_o plogp = 0.

Example 1: X = {a,b,c,d}; p(a) = p(b) = %, p(c)
Entropy H(X) = 2% log, 8 4 % log, 4 + % logs 2

Example 2: X' = {a,b,c,d}; p(a) = p(b) = p(c)
Entropy H(X) = 41 log, 4 = 2.




Example 3 — Bernoulli Distribution

Let X € {0,1} with X ~ Bern(X|0): p(X =0)=1—60and p(X =1) =4.
Entropy of X is H(X) = Ha(8) := —flogf — (1 — ) log(1 — 8).

1_

0.8

0 0.5 1
8 = p(X=1)

@ Minimum entropy — no uncertainty about X, i.e. § =1lorf =0
@ Maximum when — complete uncertainty about X, i.e. # = 0.5
@ For §# = 0.5 (e.g. a fair coin) Ha(X) =1 bit. L8L o o
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Property: Concavity

Proposition

Let p=(p1,...,pn). The function H(p) := — Zfil p; In p; is concave.

First derivative is VH(p) = — (Inp1 + 1,...,Inpy + 1) and so second
derivative is V2H(p) = diag (—p; ', ..., —py"), which is negative

semi-definite so H(p) is concave.

We can switch between log, and In since for x > 0
log, x = log, €"* = In x. log, e.

When entropy is defined using log, its base is 2 and units are bits. When

entropy is defined using In it has base e and units of nats.
PR
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Example 4 — Categorical Distribution

Categorical distributions with 30 different states:

0.5 0.5
H =177 H = 3.09
w w
2 R
3 025} 3 025}
0 0
S S
Q Q

(Figure from Bishop, PRML, 2006)
@ The more sharply peaked the lower the entropy
@ The more evenly spread the higher the entropy

e Maximum for uniform distribution: H(X) = — log % ~ 3.40 nats
» When will the entropy be minimum? n?ﬂ;,?gn?,
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Property: Maximised by Uniform
Distribution

Proposition

Let X take values from X = {1,..., N} with distribution p = (p1,..., pn)
where p; = p(X = i). Then H(X) < log, N with equality iff p; = § Vi.

Sketch Proof-
Objective: max, H(X) = — SN pilogpi s.t. SV, pi = 1. Lagrangian:

L(p) = —Zp; log pi + A (Z pi — 1) : (1)

VL(p) =0 gwes =Y .pi—1=0and dﬁ —(logpi+1)+A=0so
logpi =\ —1 = p; =21 Summing p, glves 1= 2% = N2~
Taking logs: 0 =log, N + A\ — 1 so p; = 27 le&2N = &

Note that log, N is number of bits needed to describe an outcome of X.




Property: Decomposability

Forarv. X on X = {x1,...,xy} with probability distribution
P = (pla'“:pN):

H(X) = H(XW) + (1 - pi)H (XN

X1 € {0,1} indicates if X = x; or not, so:
p(XW =1) = p(X = x1) = py and p(XM) = 0) = p(X # x1) = 1

X@N) € {xy,...,xn} is r.v. over outcomes except x; and

p(X(2:N) — X) — p(X — X|X #Xl) — (152;31?"'3 fl_‘zll)
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Joint Entropy

The joint entropy H(X, Y) of a pair of discrete random variables with
joint distribution p(X, Y) is given by:

H(X,Y) =Exy {'Og p(le Y)]

1
=) ") p(x,y)log )

xeX yey

Easy to remember: This is just the entropy H(Z) for a random variable
Z = (X,Y)over Z=X x Y with distribution p(Z) = p(X, Y).




Joint Entropy (Independent random variables)

If X and Y are statistically independent we have that:

HUX; Y )= ZZp(xylog (1 7

x€X yey
== > p(x)p(y)[log p(x) + log p(y)]
xeX yey
= p(x)logp(x) 3" p(y) = p(y)logp(y) Y p(x)
xXEX yey yeYy xeX
\—V—/ "Vl
=Y p(x) Iog—+zp(y log 75 )
XEX yey
= H(X) + H(Y)

Entropy is additive for independent random variables.
Also, H(X,Y) = H(X) + H(Y) implies p(X, Y) = p(X)p(Y).
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An Axiomatic Characterisation

Why that definition of entropy? Why not another function?

Suppose we want a measure H(X) of “information” in r.v. X so that
© H depends on the distribution of X, and not the outcomes themselves

@ The H for the combination of two variables X, Y is at most the sum
of the corresponding H values

© The H for the combination of two independent variables X, Y is the
sum of the corresponding H values

@ Adding outcomes with probability zero does not affect H

@ The H for an unbiased Bernoulli is 1

© The H for a Bernoulli with parameter p tendsto 0 as p — 0
Then, the only possible choice for H is

H(X) ==Y p(x)log, p(x)

X




Conditional Entropy

The conditional entropy of Y given X = x is the entropy of the probability
distribution p(Y|X = x):

1
p(y|X = x)

H(YIX =x) =) p(y|X = x)log
yey

The conditional entropy of Y given X, is the average over X of the
conditional entropy of Y given X = x:

H(YIX) = 3 p()H(Y|X = x)

xeX
1
—XEZXP(X ;y plylx)log Zr

=Xy [p(YIX)}

Average uncertainty that remains about Y when X is known.




Chain Rule

The joint entropy can be written as:

HIX,Y) == > p(x,y)logp(x,y)

xXeEX yeY

==Y p(x,y)[log p(x) + log p(y|x)]

xeEX yeY

==Y logp(x) Y plx,y) = 3 plx.y)log p(y|x)

x€X gey ) xeX yey
pa)
= H(X) + H(Y|X) = H(Y) + H(X|Y)

The joint uncertainty of X and Y is the uncertainty of X plus the
uncertainty of Y given X




Relative Entropy

The relative entropy or Kullback-Leibler (KL) divergence between two
probability distributions p(X) and g(X) is defined as:

DkL(pllq) = ; p(x) log % = Ep(x) [Iog

)

e Note:
» Both p(X) and g(X) are defined over the same alphabet X’

@ Conventions:

Ologggo Olog%fi;e—fo pIogEd:Efoc




Relative Entropy

Properties:
o Dki(pllg) =20
° Dki(pllg) =0 p=gq
o Dki(pllg) # DkL(qllp)
Observations:

@ Not a true distance since is not symmetric and does not satisfy the
triangle inequality

@ Hence, "KL divergence” rather than "KL distance”

@ Very important in machine learning and information theory. The
“right” distance for distributions.




Mutual Information

Let X, Y be two r.v. with joint p(X, Y') and marginals p(X) and p(Y):

The mutual information I(X;Y) is the relative entropy between the joint
distribution p(X, Y') and the product distribution p(X)p(Y):

I(X;Y) = DL (p(X,Y)|p(X)p(Y))
B . p(x,y)
=2, > ply)lo r o

xeX yey

Measures “how far away” the joint distribution is from independent.

Intuitively, how much information, on average, does X convey about Y.




Relationship between Entropy and
Mutual Information

We can re-write the definition of mutual information as:

B . W log PX:Y)
=2 2 Plxy)log rales

xeX yey
_ Z Z ,D(X,_V) log P(X|Y)
xeX ye)y P(X)
=— logp(x) Y p(x ( > plxy Iogp(le))
xeX yeyY xeX yey
= H(X) — H(X|Y)

The average reduction in uncertainty of X due to the knowledge of Y.
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Mutual Information: Properties

@ Mutual Information is non-negative:
I(X;Y)>0
e Since H(X,Y) = H(X)+ H(Y|X) we have that:
I(X;Y)=H(X)+ H(Y)— H(X,Y)
@ Above is symmetric in X and Y so
[(X:Y)=I{Y;X)
e Finally:
[(X; X)=H(X)— H(X|X) = H(X)

Sometimes the entropy is referred to as self-information




Breakdown of Joint Entropy

H(X,Y)



Conditional Mutual Information

The conditional mutual information between X and Y given Z = z:

I(X;Y|Z =2zx) = HX|Z=2z)— H(X|Y,Z = z).
Averaging over Z we obtain:
The conditional mutual information between X and Y given Z:
I(X;Y|Z)=H(X|Z) — HX|Y, Z)

x.y.z) log pX, Y|2)
YA TS p(X[Z2)p(Y]2)

— EP(




Q&A

Please write any feedback regarding class to
sayans@slis.tsukuba.ac.jp
Sub: Informatics class feedback
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